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We introduce a new partially linear functional additive model, and we consider the problem of variable selection for this model.
Based on the functional principal components method and the centered spline basis function approximation, a new variable
selection procedure is proposed by using the smooth-threshold estimating equation (SEE). The proposed procedure automatically
eliminates inactive predictors by setting the corresponding parameters to be zero and simultaneously estimates the nonzero
regression coefficients by solving the SEE. The approach avoids the convex optimization problem, and it is flexible and easy to
implement. We establish the asymptotic properties of the resulting estimators under some regularity conditions. We apply the
proposed procedure to analyze a real data set: the Tecator data set.

1. Introduction

Functional data may be viewed as realization of observed
stochastic processes, and it is commonly encountered in
many fields of applied sciences, such as econometrics,
biomedical studies, and physics experiment.The Tecator data
set is collected by the Tecator company and is publicly avail-
able at http://lib.stat.cmu.edu/datasets/tecator. This data set
consists of 215 meat samples. The measurements were made
through a spectrometer named the Tecator Infratec Food
and Feed Analyzer, and the spectral curves were recorded
at wavelengths ranging from 850 nm to 1050 nm. For each
meat sample, the data consists of a 100 channel spectrum of
absorbances as well as the contents of moisture (water), fat,
and protein. The three contents of fat, protein, and moisture
(water), measured in percentages, are determined by analytic
chemistry.We aim to predict the fat content of ameat sample.
In this paper, we propose a new partially linear functional
additive model and apply the SEE procedure to analyze the
Tecator data set.

With the development of computer technology, much
progress has been made on developing methodologies for
analyzing functional data by many researchers, like Ramsay
and Silverman [1], Cardot, Ferraty, and Sarda [2], Lian and

Li [3], Fan, James, and Radchenko [4], Feng and Xue [5],
Yu, Zhang, and Du [6], Zhou, Du, and Sun [7], among
others. Regression models play a major role in the functional
data analysis. The most widely used regression model is the
following functional linear model:𝑌 = ∫

T

𝛽 (𝑡) 𝑋 (𝑡) d𝑡 + 𝜀, (1)

where 𝑌 is a scalar response, functional predictor 𝑋(𝑡) is a
smooth and square-integrable random function defined on a
compact domainT = [0, 1] for simplicity, 𝛽(𝑡) is the square-
integrable regression parameter function, and 𝜀 is a random
error, which is independent of 𝑋(𝑡). A commonly adopted
approach for fitting model is the basis expansion; that is,𝑋(𝑡) = 𝜇(𝑡) + ∑∞𝑘=1 𝜉𝑘𝜙𝑘(𝑡), where 𝜇(𝑡) = 𝐸{𝑋(𝑡)}. Model (1)
is then transformed to a linear form with the coefficients 𝜉𝑘:𝐸(𝑌 | 𝑋) = 𝑎0 +∑∞𝑘=1 𝜉𝑘𝑏𝑘, where 𝑎0 = ∫10 𝛽(𝑡)𝜇(𝑡)d𝑡 and 𝑏𝑘 =∫1
0
𝛽(𝑡)𝜙𝑘(𝑡)d𝑡. The basis function set {𝜙𝑘(𝑡)} can be either

predetermined (e.g., Fourier basis, wavelets, or B-splines
basis) or data-driven. One convenient choice for data-driven
basis is the eigenbasis of the autocovariance operator of𝑋(𝑡), in which case the random coefficients {𝜉𝑘} are called
the functional principal component (FPC) scores. The FPC
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scores have zero means and variances equal to the corre-
sponding eigenvalues {𝜆𝑘, 𝑘 = 1, 2, ⋅ ⋅ ⋅}. We focus on the FPC
representation of the functional regression throughout this
paper.

Müller and Yao [8] relaxed the linearity assumption and
proposed a functional additive model (FAM). This leads to
a more widely applicable and flexible framework for the
functional regression models. In the case of scalar response,
the linear structure is replaced by the sum of nonlinear
functional components; that is,

𝐸 (𝑌 | 𝑋) = 𝑎0 + ∞∑
𝑘=1

𝑓𝑘 (𝜉𝑘) , (2)

where 𝑓𝑘(𝜉𝑘) are unknown smooth functions. Model (2)
was fitted by estimating {𝜉𝑘} by the functional principal
component analysis, and by estimating {𝑓𝑘} by the local
polynomial smoothing in Müller and Yao [8]. Zhu, Yao, and
Zhang [9] proposed a new regularization framework for the
structure estimation of FAM in the context of reproducing
kernel Hilbert spaces. The selection was achieved by the
penalized least squares using a penalty which encourages the
sparse structure of the additive components, and the rate of
convergence was investigated.

However, in many real world problems, it is common to
collect information on a large number of nonfunctional pre-
dictors. How to incorporate scalar predictors into the func-
tional regression and perform model selection are important
issues. In this paper, we combine the linear model with
the functional additive model and introduce a new partially
linear functional additive model (PLFAM).

Traditional real-value additive models were studied in
Stone [10], Wang and Yang [11], Huang, Horowitz and Wei
[12], and Zhao and Xue [13]. When the explanatory variables
are of functional nature, Ferraty andVieu [14] used a two-step
procedure to estimate an additive model with two functional
predictors. Fan, James, and Radchenko [4] suggested a new
penalized least squares method to fit the nonlinear functional
additive model. This method can efficiently fit the high-
dimensional functional models while simultaneously per-
forming variable selection to identify the relevant predictors.
Febrero-Bande and Gonzalez-Manteiga [15] extended the
ideas of the generalized additive models with multivariate
data to the functional data covariates. The proposed algo-
rithm was amodified version of the local scoring and backfit-
ting algorithm that allows for the nonparametric estimation
of the link function.

In the last decades, variable selection has received sub-
stantial attention, which has been a very important topic in
regression analysis. Generally speaking, most of the variable
selection procedures are based on penalized estimation based
on some penalty functions, like Lasso penalty [16], SCAD
penalty [17], Adaptive Lasso [18], and so on. However, these
penalty functions have a singularity at zero such that these
penalized estimation procedures require convex optimiza-
tion, while adding the burden of computation. To overcome
this problem, Ueki [19] developed a new variable selection
procedure called the smooth-threshold estimating equation
that can automatically eliminate irrelevant parameters by

setting them as zero. The method has also been successfully
applied to a large class of models; for example, Lai, Wang and
Lian [20] explored the generalized the estimation equation
(GEE) estimation and the smooth-threshold generalized
estimation equation (SGEE) variable selection for single-
index model with clustered data. Li et al. [21] considered the
SGEE variable selection for the generalized linear model with
longitudinal data. Tian, Xue, and Xu [22] proposed a smooth-
threshold estimating equation variable selection for varying
coefficient models with longitudinal data.

As we know, functional regression models have been
widely applied to engineering problems. For example, Esca-
bias, Aguilera, and Valderrama [23] used functional logistic
regression to deal with the environmental problem, which is
to estimate the risk of drought in a specific zone from time
evolution of temperatures. Sonja, Branimir, and DraDen [24]
dealt with tool wear in milling process and the prediction
of its behaviour by utilizing functional data analysis (FDA)
methodology. Pokhrel and Tsokos [25] applied functional
data analysis techniques to model age-specific brain cancer
mortality trend and forecast entire age-specific functions
using exponential smoothing state-space models.

In this article, we propose a new functional regression
model and consider the variable selection problem for this
model; then we apply the proposed procedure to analyze the
Tecator data set. Motivated by the idea in Ueki [19], based
on the functional principal components analysis and the
centered spline basis function approximation, an automatic
variable selection procedure is proposed using the smooth-
threshold estimating equation.Theproposed procedure auto-
matically eliminates the irrelevant parameters in the model,
while estimating the nonzero regression coefficients. Our
approach can be easily implemented without solving any
convex optimization problems, and it reduces the burden
of computation. The proposed method shares some of the
desired features including the oracle property. The proposed
smooth-threshold estimating equation approach is flexible
and easy to implement. Finally, the proposed method is
applied to analyze a real data set: the Tecator data set. The
validity of the partially linear functional additive model and
the SEE method are confirmed.

The rest of this paper is organized as follows. In Section 2,
we propose a variable selection procedure for PLFAM and
study the asymptotic properties under some regularity condi-
tions. In Section 3, we give the computation of the estimators
as well as the choice of the tuning parameters. In Section 4,
we apply the proposedmethod to analyze the Tecator data set.
Concluding remarks are presented in Section 5.The technical
proofs of all asymptotic results are provided in the Appendix.

2. Methodology and Main Results

Let𝑌 be a real-valued random variable, 𝑍 be a𝑝-dimensional
vector of random variables, and 𝑋(𝑡) be a zero mean and
square-integrable random function defined on interval [0, 1].
Assume that {𝑌𝑖, 𝑍𝑖, 𝑋𝑖(⋅)}𝑛𝑖=1 are independent identically and
distributed realizations of the pair {𝑌, 𝑍,𝑋(⋅)}. Denote by𝜉𝑖,∞ = (𝜉𝑖1, 𝜉𝑖2, ⋅⋅⋅)𝑇 the FPC scores sequence of𝑋𝑖(𝑡), which is
associatedwith eigenvalues {𝜆1 , 𝜆2, ⋅⋅⋅}with𝜆1 ≥ 𝜆2 ≥ ⋅⋅⋅ ≥ 0.
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2.1. Smooth-Threshold Estimating Equation. For the conve-
nience of model regularization, we would like to restrict the
predictor variables to take values in [0, 1] without loss of
generality. This is achieved by taking a transformation of
the FPC scores through a cumulative distribution function
(CDF) Ψ : 𝑅 󳨀→ [0, 1] for all {𝜉𝑖𝑘}. We take the normal CDF
denoted byΨ(⋅, 𝜆𝑘), with zeromean and variance 𝜆𝑘. It is easy
to see that, if 𝜉𝑖𝑘s follow normal distribution, the normal CDF
leads to uniformly distributed transformed variables on [0, 1].

Denoting the transformed variable of {𝜉𝑖𝑘} by {𝜁𝑖𝑘}, i.e.,𝜁𝑖𝑘 = Ψ(𝜉𝑖𝑘, 𝜆𝑘), and denoting 𝜁𝑖,∞ = (𝜁𝑖1, 𝜁𝑖2, ⋅⋅⋅)𝑇, we propose
a partially linear functional additive model as follows:

𝑌𝑖 = 𝑍𝑇𝑖 𝛽 + ∞∑
𝑘=1

𝑓0𝑘 (𝜁𝑖𝑘) + 𝜀𝑖, (3)

where 𝜀𝑖 is independent error with zero mean and variance𝜎2, 𝛽 is a 𝑝 × 1 vector of unknown regression coefficients,
and 𝑓0(𝜁𝑖∞) = ∑∞𝑘=1 𝑓0𝑘(𝜁𝑖𝑘) is a smooth function. To ensure
identifiability, we assume that 𝐸𝑓0𝑘(𝜁𝑖𝑘) = 0. In this paper,
we assume that the PLFAM is the sparse structure of the
underlying true model, and this assumption is critical in the
context of functional data analysis. It means that the number
of important functional additive components that contribute
to the response is finite, but not necessarily restricted to the
leading terms. In particular, we denote byI the index set of
the important FPC scores and assume that |I| < ∞, where| ⋅ | denotes the cardinality of a set. In other words, there is
a sufficiently large 𝑞 such that I ⊆ {1, ⋅ ⋅ ⋅, 𝑞}, which implies
that 𝑓𝑘 ≡ 0 as long as 𝑘 > 𝑞. Model (3) is thus equivalent to

𝑌𝑖 = 𝑍𝑇𝑖 𝛽 + 𝑞∑
𝑘=1

𝑓0𝑘 (𝜁𝑖𝑘) + 𝜀𝑖. (4)

We replace 𝑓0𝑘(𝜁𝑖𝑘) with its basis function approximations.
Let 𝐵(𝜁𝑖𝑘) = (𝐵1(𝜁𝑖𝑘), ⋅ ⋅ ⋅, 𝐵𝐿(𝜁𝑖𝑘))𝑇 be the centralized B-spline
basis functions with the order of 𝑀, where 𝐿 = 𝐾 + 𝑀,
and 𝐾 is the number of interior knots. Thus, 𝑓0𝑘(𝜁𝑖𝑘) can be
approximated by

𝑓0𝑘 (𝜁𝑖𝑘) ≈ 𝐵 (𝜁𝑖𝑘)𝑇 𝛾𝑘, 𝑘 = 1, ⋅ ⋅ ⋅, 𝑞. (5)

Substituting this into model (4), we have

𝑌𝑖 ≈ 𝑍𝑇𝑖 𝛽 + 𝑞∑
𝑘=1

𝐵 (𝜁𝑖𝑘)𝑇 𝛾𝑘 + 𝜀𝑖. (6)

Let 𝑃𝑖 = (𝑍𝑇𝑖 ,𝑊𝑇𝑖 ), 𝑊𝑇𝑖 = (𝐵(𝜁𝑖1)𝑇, ⋅ ⋅ ⋅, 𝐵(𝜁𝑖𝑞)𝑇), and𝜃 = (𝜃1, ⋅ ⋅ ⋅, 𝜃𝑠)𝑇 = (𝛽𝑇, 𝛾𝑇1 , ⋅ ⋅ ⋅, 𝛾𝑇𝑞 )𝑇, 𝑠 = 𝑝 + 𝑞𝐿. Due to
the unknown 𝜁𝑖𝑘, we substitute the estimator of 𝜁𝑖𝑘 by 𝜁𝑖𝑘 =Ψ(𝜉𝑖𝑘, 𝜆̂𝑘), where 𝜉𝑖𝑘 and 𝜆̂𝑘 are the estimators of 𝜉𝑖𝑘 and 𝜆𝑘,
respectively. Let 𝑃̂𝑖 = (𝑍𝑇𝑖 , 𝑊̂𝑇𝑖 ), 𝑊̂𝑇𝑖 = (𝐵(𝜁𝑖1)𝑇, ⋅ ⋅ ⋅, 𝐵(𝜁𝑖𝑞)𝑇),
and define the following estimating function of 𝜃

𝑈 (𝜃) = 𝑛∑
𝑖=1

𝑃̂𝑇𝑖 (𝑌𝑖 − 𝑃̂𝑖𝜃) . (7)

Motivated by the idea of Ueki [19], we propose the
following smooth-threshold estimating equation:(𝐼𝑠 − Δ)𝑈 (𝜃) + Δ𝜃 = 0, (8)

where 𝑠 = 𝑝 + 𝑞𝐿, 𝐼𝑠 is the 𝑠-dimensional identity matrix,
and Δ is the diagonal matrix, i.e., Δ = diag(Δ 1, Δ 2), whereΔ 1 = diag{𝛿11, ⋅ ⋅ ⋅, 𝛿1𝑝} is a 𝑝 × 𝑝 diagonal matrix, and Δ 2 =
diag{𝛿21, ⋅ ⋅ ⋅, 𝛿21, ⋅ ⋅ ⋅, 𝛿2𝑞, ⋅ ⋅ ⋅, 𝛿2𝑞} is a 𝑞𝐿× 𝑞𝐿 diagonal matrix.
Note that 𝛿1𝑗 = 1 reduces to 𝛽𝑗 = 0 for 𝑗 = 1, ⋅ ⋅ ⋅, 𝑝, and𝛿2𝑘 = 1 reduces to 𝛾𝑘 = 0, that is, 𝑓0𝑘(⋅) = 0, for 𝑘 = 1, ⋅ ⋅⋅, 𝑞.Therefore, (8) can yield a sparse solution. Unfortunately,
we cannot directly obtain the estimator of 𝜃 by solving the
smooth-threshold estimating equation (8).The reason is that
(8) involves the unknown parameters 𝛿1𝑗 and 𝛿2𝑘, which need
to be chosen using some data-driven criteria.

For the choice of 𝛿1𝑗 and 𝛿2𝑘, Ueki [19] suggested
that 𝛿1𝑗 and 𝛿2𝑘 may be determined by the data, 𝛿1𝑗 =
min(1, ]/|𝛽(0)𝑗 |1+𝜏) and 𝛿2𝑘 = min(1, ]/‖𝛾(0)

𝑘
‖1+𝜏), with initial

estimators 𝛽(0)𝑗 and 𝛾(0)𝑘 , respectively. The initial estimators𝛽(0)𝑗 and 𝛾(0)
𝑘

are the solutions of the estimating equation𝑈(𝜃) = 0. Note that this choice involves two tuning parame-
ters (], 𝜏). In Section 3, we will propose a BIC-type criterion
to select the tuning parameters. Replacing Δ in (8) by Δ̂
with diagonal elements 𝛿1𝑗 and 𝛿2𝑘, the smooth-threshold
estimating equation (8) becomes(𝐼𝑠 − Δ̂)𝑈 (𝜃) + Δ̂𝜃 = 0. (9)

The solution of (9) denoted by 𝜃 = (𝜃1, ⋅ ⋅ ⋅ , 𝜃𝑝,𝜃𝑝+1, ⋅ ⋅ ⋅ , 𝜃𝑠)𝑇 = (𝛽𝑇, 𝛾𝑇1 , ⋅ ⋅ ⋅, 𝛾𝑇𝑞 )𝑇 is called the SEE estimator.
Thus, 𝛽 is the estimator of 𝛽, and 𝐵𝑘(𝜁𝑘)𝑇𝛾𝑘 is the estimator
of 𝑓0𝑘(𝜁𝑘). For the convenience of the notations, we define
A1 = {𝑗 : 𝛿1𝑗 ̸= 1} as the set of indices of nonzero regression
coefficient estimators, and define A2 = {𝑘 : 𝛿2𝑘 ̸= 1} as the
set of nonzero function estimators. A𝑐1 = {𝑗 : 𝛿1𝑗 = 1} and
A𝑐2 = {𝑘 : 𝛿2𝑘 = 1} are the sets of zero regression coefficient
estimators and zero function estimators, respectively. We
further denote A = A1 ∪A2, and A𝑐 = A𝑐1 ∪A𝑐2.The SEE
estimator is defined in the following form:

𝜃A = { 𝑛∑
𝑖=1

𝑃̂𝑇𝑖,A𝑃̂𝑖,A − 𝐺A}−1 𝑛∑
𝑖=1

𝑃̂𝑇𝑖,A𝑌𝑖,
𝜃A𝑐 = 0, (10)

Where 𝑃̂𝑖,A = (𝑍𝑇𝑖,A1 , 𝑊̂𝑇𝑖,A2), 𝐺A = (𝐼|A| − Δ̂A)−1Δ̂A, Δ̂A =
diag{Δ̂ 1,A1 , Δ̂ 2,A2}, and 𝐼|A| is the identity matrix with the
same dimension of Δ̂A.

2.2. Asymptotic Properties. We first introduce some nota-
tions. Let 𝑓0(⋅) and 𝛽0 denote the true values of 𝑓(⋅) and 𝛽,
respectively. 𝛾0 is the spline coefficient vector from the spline
approximation to 𝑓0(⋅). Denote 𝜃0 = (𝛽𝑇0 , 𝛾𝑇0 )𝑇, A10 = {𝑗 :𝛽0𝑗 ̸= 0},A𝑐10 = {𝑗 : 𝛽0𝑗 = 0}, A20 = {𝑘 : 𝑓0𝑘(⋅) ̸= 0}, and



www.manaraa.com

4 Mathematical Problems in Engineering

A𝑐20 = {𝑘 : 𝑓0𝑘(⋅) = 0}. We also denote A0 = A10 ∪A20 and
A𝑐0 = A𝑐10 ∪ A𝑐20. The norm of 𝑓(⋅) is defined as ‖𝑓(𝑥)‖ =(∫1
0
𝑓2(𝑥)d𝑥)1/2.
For convenience and simplicity, let 𝐶 denote a positive

constant that may be different at each appearance throughout
this paper. We list some regularity conditions that are used in
this paper.

(C1) The transformation function Ψ(𝜉, 𝜆𝑘) is differen-
tiable at 𝜉 and 𝜆𝑘, and satisfies the fact that |𝜕Ψ(𝜉, 𝜆𝑘)/𝜕𝜉| ≤𝐶𝜆𝑐0
𝑘

and |𝜕Ψ(𝜉, 𝜆𝑘)/𝜕𝜆𝑘| ≤ 𝐶𝜆𝑐0
𝑘
|𝜉| for some positive

constants 𝐶 and negative constants 𝑐0.
(C2)The second derivative 𝑋(2)(𝑡) is continuous on [0, 1]

with probability 1 and ∫𝐸[𝑋(𝑘)(𝑡)]4d𝑡 < ∞ with probability
1, for 𝑘 = 0, 2.

(C3) The spline regression parameter is identified; that
is, there is a unique 𝜃0 = (𝛽𝑇0 , 𝛾𝑇01, ⋅ ⋅ ⋅ , 𝛾𝑇0𝑞)𝑇 ∈ 𝑆, where the
parameter space 𝑆 is compact.

(C4) The inner knots {𝑐𝑖, 𝑖 = 1, ⋅ ⋅ ⋅ , 𝐾} satisfy
max
1≤𝑖≤𝐾

󵄨󵄨󵄨󵄨ℎ𝑖+1 − ℎi󵄨󵄨󵄨󵄨 = 𝑜 (𝐾−1) ,ℎ
min1≤𝑖≤𝐾 {ℎ𝑖} ≤ 𝐶0, (11)

where ℎ𝑖 = 𝑐𝑖 − 𝑐𝑖−1, ℎ = max1≤𝑖≤𝐾ℎ𝑖, 𝑐0 = 0, and 𝑐𝐾+1 = 1.
(C5) 𝑓0𝑘(⋅) is the 𝑟th continuously differentiable on (0, 1),

where 𝑟 ≥ 2.
The following theorem gives the consistency of our

proposed estimators.

Theorem 1. Suppose that regularity conditions (C1)-(C5) hold.
For any positive ] and 𝜏, 𝑛𝑟/(2𝑟+1)] 󳨀→ 0 and 𝑛𝑟(1+𝜏)/(2𝑟+1)] 󳨀→∞, as 𝑛 󳨀→ ∞, and if𝐾 = 𝑂(𝑛1/(2𝑟+1)), one has󵄩󵄩󵄩󵄩󵄩𝑓0𝑘 (𝜁𝑘) − 𝑓0𝑘 (𝜁𝑘)󵄩󵄩󵄩󵄩󵄩 = 𝑂𝑝 (𝑛−𝑟/(2𝑟+1)) , 𝑘 = 1, ⋅ ⋅ ⋅ , 𝑞. (12)

In the following theorem, we will show that such consis-
tent estimators enjoy the sparsity property.

Theorem 2. Under the regularity conditions ofTheorem 1, one
has

(i) 𝑃(A𝑐1 = A𝑐10) 󳨀→ 1,
(ii) 𝑃(A𝑐2 = A𝑐20) 󳨀→ 1.
Next, we will show that the estimators of the nonzero

coefficients for the parametric components have the same
asymptotic distribution as that based on the correct model.

Theorem 3. Suppose that the regularity conditions of
Theorem 1 hold; as 𝑛 󳨀→ ∞, one has,{𝐷 (𝛽A1)}−1/2 {𝛽A1 − 𝛽0A10} L󳨀→ 𝑁(0, 𝐼|A1|) , (13)

where 𝐷(𝛽A1) is defined in (A.23) in the Appendix, |A1| is the
number ofA1, 𝐼|A1| is the identity matrix, and “

L󳨀→” represents
the convergence in distribution.

3. Issues in Practical Implementation

3.1. Computational Algorithm. Since the transformed FPC
scores {𝜁𝑖} cannot be observed, we first need to estimate the
FPC scores before the estimation and selection of 𝑓0𝑘(⋅). In
what follows, we propose the algorithm to implement the
estimation procedure.

Step 1. Apply the functional principal component analysis
(Zhu, Yao, and Zhang, 2014) to estimate the FPC scores {𝜉𝑖1, ⋅ ⋅⋅, 𝜉𝑖𝑞} of 𝑋𝑖(𝑡) denoted by {𝜉𝑖1, ⋅ ⋅ ⋅, 𝜉𝑖𝑞}. Then we can obtain
the transformed variables 𝜁𝑖𝑘 = Ψ(𝜉𝑖𝑘, 𝜆̂𝑘), where 𝜆̂𝑘 is the
estimated eigenvalue, and 𝑞 is chosen to explain nearly 100%
of the total variation.

Step 2. Calculate the initial estimate 𝜃0 of 𝜃 by solving the
estimating equation 𝑈(𝜃) = 0.
Step 3. Choose the tuning parameters ] and 𝜏 by theBIC-type
criterion in the next subsection.

Step 4. Solve the smooth-threshold estimating equations (9)
and update the estimator of 𝜃 as follows:

𝜃A = { 𝑛∑
𝑖=1

𝑃̂𝑇𝑖,A𝑃̂𝑖,A − 𝐺A}−1 𝑛∑
𝑖=1

𝑃̂𝑇𝑖,A𝑌𝑖,
𝜃A𝑐 = 0. (14)

3.2. Selection of the Tuning Parameters. Following Ueki [19],
we minimize the following BIC-type criterion to choose the
tuning parameters (], 𝜏).
𝐵𝐼𝐶],𝜏 = 𝑛∑

𝑖=1

(𝑌𝑖 − 𝑃̂𝑖𝜃],𝜏)𝑇 (𝑌𝑖 − 𝑃̂𝑖𝜃],𝜏) + log (𝑛)
⋅ 𝑑𝑓],𝜏, (15)

where 𝜃],𝜏 is the SEE estimator for given (], 𝜏), and 𝑑𝑓],𝜏 is the
number of nonzero coefficients 𝜃 = (𝛽𝑇, ‖𝛾1‖, . . . , ‖𝛾𝑞‖)𝑇.
4. Application to Real Data

We demonstrate the effectiveness of the proposed method
by an application for the Tecator data set. The Tecator data
set contains 215 samples; each sample contains the finely
chopped pure meat with different moisture, fat, and protein
contents, which are measured in percentages and are deter-
mined by the analytical chemistry. The functional covariate
by 𝑋(𝑡) for each food sample consists of a 100-channel
spectrum of absorbances recorded on a Tecator Infratec Food
and Feed Analyzer working in the wavelength range 850-1050
nm by the near-infrared transmission (NIT) principle. In this
analysis, 𝑌 is the fat content, {𝜉𝑘} are functional principal
component (FPC) scores of 𝑋(𝑡), and 𝜁𝑘 = Ψ(𝜉𝑘, 𝜆𝑘), we
take the protein and the moisture content by 𝑍1 and 𝑍2,
respectively. In order to predict the fat content of a meat
sample, many models and algorithms are proposed to fit the
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Table 1: The prediction mean squared error (PMSE) for the different models.

Models PMSE𝑌 = 𝜇 + 𝑚1(𝑍1) + 𝑚2(𝑋) + 𝜀, 0.0242𝑌 = 𝜇 + 𝑚3(𝑍2) + 𝑚4(𝑋) + 𝜀, 0.0368𝑌 = 𝜇 + 𝑚5(𝑍1) + 𝑚6(𝑍2) + 𝑚7(𝑋) + 𝜀, 0.0395𝑌 = 𝛽0 + 𝛽1𝑍1 + 𝛽2𝑍2 + ∑4𝑘=1 𝑓0𝑘(𝜁𝑘) + 𝜀, (SEE Method) 0.0153𝑌 = 𝛽0 + 𝛽1𝑍1 + 𝛽2𝑍2 + ∑4𝑘=1 𝑓0𝑘(𝜁𝑘) + 𝜀, (SCADMethod) 0.0160𝑌 = 𝛽0 + 𝛽1𝑍1 + 𝛽2𝑍2 + ∑4𝑘=1 𝑓0𝑘(𝜁𝑘) + 𝜀, (LASSOMethod) 0.0234

data; see, for example, Aneiros-Pérez and Vieu [26]. In this
paper, to fit the data, we consider the following partially linear
functional additive model:

𝑌𝑖 = 𝛽0 + 𝛽1𝑍𝑖1 + 𝛽2𝑍𝑖2 + 𝑞∑
𝑘=1

𝑓0𝑘 (𝜁𝑖𝑘) + 𝜀𝑖. (16)

To compare the performance of different models, the sample
is divided into two data sets: the training sample 𝐼1 ={1, ⋅ ⋅ ⋅ , 165} is used to obtain the estimators of the parameter
and the nonparametric function, and the testing sample 𝐼2 ={166, ⋅ ⋅ ⋅ , 215} is used to verify the quality of prediction by
the following mean squared errors of prediction (PMSE),

PMSE = 150 ∑𝑗∈𝐼2 (𝑌𝑗 − 𝑌̂𝑗)
2

var𝐼2 (𝑌) . (17)

In this section, we consider the variable selection problem
for model (16). We apply the proposed smooth-threshold
estimating equation approach to eliminate the irrelevant
parameters in the model, while estimating the nonzero
regression coefficients. Steps are as follows.

Step 1. Estimate the FPC scores {𝜉𝑖1, ⋅ ⋅ ⋅, 𝜉𝑖𝑞} of𝑋𝑖(𝑡) denoted
by {𝜉𝑖1, ⋅ ⋅ ⋅, 𝜉𝑖𝑞}.Then, we can obtain the transformed variables𝜁𝑖𝑘 = Ψ(𝜉𝑖𝑘, 𝜆̂𝑘), where 𝜆̂𝑘 is the estimated eigenvalue, and𝑞 = 4 is chosen to explain nearly 100% of the total variation.

Step 2. Calculate the initial estimate 𝜃0 of 𝜃 by solving the
estimating equation 𝑈(𝜃) = 0.
Step 3. Choose the tuning parameters ] and 𝜏 by theBIC-type
criterion.

Step 4. Solve the smooth-threshold estimating equations (9).

The estimated values of the 𝛽0, 𝛽1, and 𝛽2 are 𝛽0 =95.2503, 𝛽1 = −1.0223, and 𝛽2 = −0.7093, and 𝑓02(⋅) is
estimated to be 0. The SEE method selects two parametric
components 𝑍1, 𝑍2 and three nonparametric components:𝑓01(⋅), 𝑓03(⋅), and 𝑓04(⋅). Hence, in conclusion, we would say
that the strong linear relationship between the fat content
and the protein and moisture contents, and 𝑓01(⋅), 𝑓03(⋅),
and 𝑓04(⋅), are important functional nonparametric part. Our
approach can be easily implemented and reduces the burden
of computation.

Aneiros-Pérez and Vieu [26] proposed several additive
semifunctional models, 𝑌 = 𝜇+𝑚1(𝑍1) +𝑚2(𝑋) + 𝜀,𝑌 = 𝜇+

𝑚3(𝑍2)+𝑚4(𝑋)+𝜀, and𝑌 = 𝜇+𝑚5(𝑍1)+𝑚6(𝑍2)+𝑚7(𝑋)+𝜀,
where 𝑚𝑖(⋅) are nonparametric function for 𝑖 = 1, ⋅ ⋅ ⋅ , 7,
and 𝜇 = 𝐸(𝑌). To assess the performance of the proposed
PLFAM and SEE method, we compare with these additive
semifunctional models and the SCAD-penalized method and
the Lasso-penalized method. The PMSE results are reported
in Table 1. From Table 1 we can see the following.(1) Real explanatory variables 𝑍1 and 𝑍2 can be used to
improve the accuracy of the prediction; it is consistent with
the conclusion of Aneiros-Pérez and Vieu [26].(2)Comparedwith these additive semifunctionalmodels,
the PLFAMhas amuch smaller PMSE.The proposed PLFAM
performs better than other models.(3) Compared to the SCAD-penalized method and the
Lasso-penalized method, the PMSE of PLFAM(SEEmethod)
is smaller than all of the results of them.

These conclusions confirm the validity of the proposed
PLFAM and SEE method.

5. Concluding Remarks

The article develops a SEE procedure for automatic variable
selection in the partially linear functional additive model.
The proposed procedure can identify nonzero regression
coefficients significant variables from the parametric com-
ponents and the nonparametric components simultaneously,
and it automatically eliminates the irrelevant parameters
by setting them as zero and simultaneously estimates the
nonzero regression coefficients. It is noteworthy that the
proposed procedure avoids the convex optimization problem,
and the resulting estimator enjoys the oracle property. The
application to the Tecator data set confirms the validity of the
proposed PLFAMmodel and the SEE method.

Appendix

Proofs of the Main Results

In this Appendix, we will prove the main results stated in
Section 2.

Proof of Theorem 1. Let 𝑆𝑛(𝜃) = (𝐼𝑠 − Δ̂)𝑈(𝜃) + Δ̂𝜃, and 𝜌 =𝑛−𝑟/2𝑟+1. We will prove that, ∀𝜀 > 0, there exists a constant𝐶 > 0, such that

𝑃( sup
‖𝑢‖=𝐶

𝑛−1/2𝑢𝑇𝑆𝑛 (𝜃0 + 𝜌𝑢) > 0) ≥ 1 − 𝜀 (A.1)
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for 𝑛 large enough. This will be sufficient to ensure that there
exists a local solution to the equation 𝑆𝑛(𝜃) = 0 such that‖𝜃],𝜏 − 𝜃0‖ = 𝑂𝑝(𝜌) with probability at least 1 − 𝜀. That is,‖𝛽],𝜏 − 𝛽0‖ = 𝑂𝑝(𝜌) and ‖𝛾],𝜏 − 𝛾0‖ = 𝑂𝑝(𝜌) with probability
at least 1 − 𝜀. We will evaluate the sign of 𝑛−1/2𝑢𝑇𝑆𝑛(𝜃0 + 𝜌𝑢)
in the ball {𝜃0 + 𝜌𝑢 : ‖𝑢‖ = 𝐶}. Note that𝑛−1/2𝑢𝑇𝑆𝑛 (𝜃0 + 𝜌𝑢) = 𝑛−1/2𝑢𝑇𝑆𝑛 (𝜃0)

+ 𝑛−1/2𝜌𝑢𝑇 𝜕𝜕𝜃𝑆𝑛 (𝜃) 𝑢≡ 𝐼𝑛1 + 𝐼𝑛2,
(A.2)

where 𝜃 lies between 𝜃0 and 𝜃0 + 𝜌𝑢. By some simple calcula-
tions, we have𝐼𝑛1 = 𝑛−1/2𝑢𝑇 (𝐼𝑠 − Δ̂)𝑈 (𝜃0) + 𝑛−1/2𝑢𝑇Δ̂𝜃0≡ 𝐼𝑛11 + 𝐼𝑛12. (A.3)

By the Cauchy-Schwarz inequality, we obtain that󵄨󵄨󵄨󵄨𝐼𝑛11󵄨󵄨󵄨󵄨 ≤ 𝑛−1/2 󵄩󵄩󵄩󵄩󵄩𝑢𝑇 (𝐼𝑆 − Δ̂)󵄩󵄩󵄩󵄩󵄩 󵄩󵄩󵄩󵄩𝑈 (𝜃0)󵄩󵄩󵄩󵄩 ≤ 𝑛−1/2 (1
−min [min

𝑗∈A1
𝛿1𝑗 (], 𝜏) ,min

𝑘∈A2
𝛿2𝑘 (], 𝜏)]) ‖𝑢‖

⋅ 󵄩󵄩󵄩󵄩𝑈 (𝜃0)󵄩󵄩󵄩󵄩 .
(A.4)

Sincemin𝑗∈A1𝛿1𝑗(], 𝜏) ≤ min𝑗∈A10𝛿1𝑗(], 𝜏) andmin𝑘∈A2𝛿2𝑘(],𝜏) ≤ min𝑘∈A20𝛿2𝑘(], 𝜏), we only need to show the convergence
rate of min𝑗∈A10𝛿𝑗(], 𝜏) and min𝑘∈A20𝛿2𝑘(], 𝜏). Given the
initial estimator 𝜃(0), and we assume that 𝜃(0) satisfies ‖𝜃(0) −𝜃0‖ = 𝑂𝑝(𝑛−𝑟/(2𝑟+1)). By ]𝑛𝑟/(2𝑟+1) 󳨀→ 0, for any 𝜀 > 0 and𝑗 ∈ A10, we have
𝑃 (𝛿1𝑗 (], 𝜏) > 𝑛−𝑟/(2𝑟+1)𝜀) = 𝑃( ]󵄨󵄨󵄨󵄨󵄨𝛽(0)𝑗 󵄨󵄨󵄨󵄨󵄨1+𝜏
> 𝑛−𝑟/(2𝑟+1)𝜀) = 𝑃((]𝑛𝑟/(2𝑟+1)𝜀 )1/(1+𝜏)
> 󵄨󵄨󵄨󵄨󵄨𝛽(0)𝑗 󵄨󵄨󵄨󵄨󵄨) ≤ 𝑃((]𝑛𝑟/(2𝑟+1)𝜀 )1/(1+𝜏) > min

𝑗∈A10

󵄨󵄨󵄨󵄨󵄨𝛽0𝑗󵄨󵄨󵄨󵄨󵄨
− 𝑂𝑝 (𝑛−𝑟/(2𝑟+1))) 󳨀→ 0.

(A.5)

This means that 𝛿1𝑗(], 𝜏) = 𝑜𝑝(𝑛−𝑟/(2𝑟+1)) for each 𝑗 ∈ A10.
Similarly, we get 𝛿2𝑘(], 𝜏) = 𝑜𝑝(𝑛−𝑟/(2𝑟+1)) for each 𝑘 ∈ A20.
Therefore, we have

min(min
𝑗∈A1
𝛿1𝑗 (], 𝜏) ,min

𝑘∈A2
𝛿2𝑘 (], 𝜏))

= 𝑜𝑝 (𝑛−𝑟/(2𝑟+1)) . (A.6)

By this, (A.4), and (A.5), similar to the proof of Theorem 3.6
in Wang [27], we have ‖𝑈(𝜃0)‖ = 𝑂𝑝(𝑛1/2), then |𝐼𝑛11| =𝑂𝑝(1)‖𝑢‖ − 𝑜𝑝(𝑛−𝑟/(2𝑟+1))‖𝑢‖.

For 𝐼𝑛12, we have |𝐼𝑛12| ≤ 𝑛−1/2‖𝑢‖‖𝜃0‖ = 𝑂𝑝(𝑛−1/2)‖𝑢‖.
Hence |𝐼𝑛1| = 𝑂𝑝(1)‖𝑢‖.Now consider 𝐼𝑛2, we can derive that

𝐼𝑛2 = 𝑛−1/2𝜌𝑢𝑇 𝜕𝜕𝜃𝑆𝑛 (𝜃) 𝑢
= 𝑛−(4𝑟+1)/(4𝑟+2)𝑢𝑇 (𝐼𝑠 − Δ̂)( 𝑛∑

𝑖=1

𝑃𝑇𝑖 𝑃𝑖)𝑢
+ 𝑛−(4𝑟+1)/(4𝑟+2)𝑢𝑇Δ̂𝑢 ≡ 𝐼𝑛21 + 𝐼𝑛22,

(A.7)

where |𝐼𝑛22| = 𝑂𝑝(𝑛−(4𝑟+1)/(4𝑟+2))‖𝑢‖2. For sufficiently large𝑛, 𝑛−1/2𝑢𝑇𝑆𝑛(𝜃0 + 𝜌𝑢) on the ball {𝜃0 + 𝜌𝑢 : ‖𝑢‖ = 𝐶} is
asymptotically dominated in probability 1 by 𝐼𝑛21, which is
positive for the sufficiently large𝐶.Thus, (A.1) holds. By some
simple calculations, we have󵄩󵄩󵄩󵄩󵄩𝑓0𝑘 (𝜁𝑘) − 𝑓0𝑘 (𝜁𝑘)󵄩󵄩󵄩󵄩󵄩 = 󵄩󵄩󵄩󵄩󵄩𝑓0𝑘 (𝜁𝑘) − 𝑓0𝑘 (𝜁𝑘)+ 𝑓0𝑘 (𝜁𝑘) − 𝑓0𝑘 (𝜁𝑘)󵄩󵄩󵄩󵄩󵄩 ≤ 󵄩󵄩󵄩󵄩󵄩𝑓0𝑘 (𝜁𝑘) − 𝑓0𝑘 (𝜁𝑘)󵄩󵄩󵄩󵄩󵄩

+ 󵄩󵄩󵄩󵄩󵄩𝑓0𝑘 (𝜁𝑘) − 𝑓0𝑘 (𝜁𝑘)󵄩󵄩󵄩󵄩󵄩 ≤ {∫1
0
{𝐵𝑇 (𝜁𝑘) 𝛾𝑘

− 𝐵𝑇 (𝜁𝑘) 𝛾𝑘 − 𝜂𝑘 (𝜁𝑘)}2 𝑑𝜁𝑘}1/2
+ 󵄩󵄩󵄩󵄩󵄩𝑓0𝑘 (𝜁𝑘) − 𝑓0𝑘 (𝜁𝑘)󵄩󵄩󵄩󵄩󵄩 ≤ {2∫1

0
{𝐵𝑇 (𝜁𝑘) 𝛾𝑘

− 𝐵𝑇 (𝜁𝑘) 𝛾𝑘}2 𝑑𝜁𝑘 + 2∫1
0
𝜂2𝑘 (𝜁𝑘) 𝑑𝜁𝑘}1/2

+ 󵄩󵄩󵄩󵄩󵄩𝑓0𝑘 (𝜁𝑘) − 𝑓0𝑘 (𝜁𝑘)󵄩󵄩󵄩󵄩󵄩 = {2 (𝛾𝑘 − 𝛾𝑘)𝑇𝐻(𝛾𝑘
− 𝛾𝑘) + 2∫1

0
𝜂2𝑘 (𝜁𝑘) 𝑑𝜁𝑘}1/2 + 󵄩󵄩󵄩󵄩󵄩𝑓0𝑘 (𝜁𝑘)

− 𝑓0𝑘 (𝜁𝑘)󵄩󵄩󵄩󵄩󵄩 ,

(A.8)

where 𝜂𝑘(𝜁𝑘) = 𝑓0𝑘(𝜁𝑘) − 𝐵(𝜁𝑘)𝑇𝛾𝑘 for 𝑘 = 1, ⋅ ⋅ ⋅ , 𝑞, and𝐻 = (ℎ𝑖𝑗) is a matrix with ℎ𝑖𝑗 = ∫10 𝐵(𝜁𝑘)𝐵(𝜁𝑘)𝑇d𝜁𝑘. From
conditions (C3)-(C5) and Corollary 6.21 in Schumaker [28],
we get that ‖𝜂𝑘(𝜁𝑘)‖ = 𝑂(𝐾−𝑟). Invoking the same arguments,
we can get that ‖𝛾𝑘 − 𝛾0‖ = 𝑂𝑃(𝜌). By ‖𝐻‖ = 𝑂(1), a simple
calculation yields that

(𝛾𝑘 − 𝛾𝑘)𝑇𝐻(𝛾𝑘 − 𝛾𝑘) = 𝑂𝑝 (𝑛−2𝑟/(2𝑟+1)) . (A.9)

In addition, it is easy to show that

∫1
0
𝜂2𝑘 (𝜁𝑘) 𝑑𝜁𝑘 = 𝑂𝑝 (𝑛−2𝑟/(2𝑟+1)) . (A.10)
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By conditions (C1) and (C2), and Lemma 2 in Zhu et al. [9],
we get that󵄩󵄩󵄩󵄩󵄩𝑓0𝑘 (𝜁𝑘) − 𝑓0𝑘 (𝜁𝑘)󵄩󵄩󵄩󵄩󵄩 ≤ 𝐶 󵄩󵄩󵄩󵄩󵄩𝜁𝑘 − 𝜁𝑘󵄩󵄩󵄩󵄩󵄩 = 𝑂𝑝 (𝑛−1/2) . (A.11)

Invoking (A.9)-(A.11), we complete the proof of Theorem 1.

Proof of Theorem 2 . Similar to Theorem 1 in Zhao and Xue
[29], it is known that the initial estimator 𝜃(0) = (𝜃(0)𝑇, 𝛾(0)𝑇)𝑇
obtained by solving the estimating equation 𝑈(𝜃) = 0 is𝑛−𝑟/(2𝑟+1)-consistent. Noting that 𝑛𝑟(1+𝜏)/(2𝑟+1)] 󳨀→ ∞, we can
derive that

∑
𝑗∈A𝑐
10

𝑃( ]󵄨󵄨󵄨󵄨󵄨𝛽(0)𝑗 󵄨󵄨󵄨󵄨󵄨1+𝜏 < 1) = ]−1𝑂(𝑛−𝑟(1+𝜏)/(2𝑟+1))󳨀→ 0, (A.12)

which implies that 𝑃(𝛿1𝑗 = 1 for all j ∈ A𝑐10) 󳨀→ 1. Invoking
the same argument, we can derive that 𝑃(𝛿2𝑘 = 1 for all k ∈
A𝑐20) 󳨀→ 1. Thus, we finish the proof of Theorem 2.

Proof of Theorem 3 . As shown in Theorem 2, 𝜃𝑗 = 0 for𝑗 ∈ A𝑐0 with probability tending to 1. In addition, 𝜃A0 is the
solution of the smooth-threshold estimating equation

(𝐼|A0| − Δ̂A0
)𝑈 (𝜃A0) + Δ̂A0

𝛽A0 = 0. (A.13)

Applying a Taylor expansion to (A.13), we can show that 𝜃A0−𝜃A0 can be approximated by

[−1𝑛 𝑛∑𝑖=1 𝜕𝜕𝜃A0 𝑈𝑖 (𝜃A0) − 1𝑛𝐺A0]
−1

⋅ [1𝑛 𝑛∑𝑖=1𝑈𝑖 (𝜃A0) + 1𝑛𝐺A0𝜃A0] .
(A.14)

On the other hand,󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩 1√𝑛𝐺A0𝜃A0󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩2 ≤ 1𝑛 {1 −max𝑗∈A0𝛿𝑗 (], 𝜏)}2
⋅ ∑
𝑗∈A0

(]𝜃𝑗)2𝜃(0)2(1+𝜏)𝑗

= ]2𝑛 {1 −max𝑗∈A0𝛿𝑗 (], 𝜏)}2⋅ ∑
𝑗∈A0

󵄨󵄨󵄨󵄨󵄨𝜃(0)(−𝜏)𝑗 + (𝜃𝑗 − 𝜃(0)𝑗 ) 𝜃(0)(−𝜏−1)𝑗

󵄨󵄨󵄨󵄨󵄨2
= 𝑂𝑝 (𝑛−1]2)

⋅ ∑
𝑗∈A0

(2 󵄨󵄨󵄨󵄨󵄨𝜃(0)𝑗 󵄨󵄨󵄨󵄨󵄨−2𝜏 + 2 󵄨󵄨󵄨󵄨󵄨(𝜃𝑗 − 𝜃(0)𝑗 ) 𝜃(0)(−𝜏−1)𝑗

󵄨󵄨󵄨󵄨󵄨2)
≤ 𝑂𝑝 (𝑛−1]2) (2𝑠min

𝑗∈A0

󵄨󵄨󵄨󵄨󵄨𝜃(0)𝑗 󵄨󵄨󵄨󵄨󵄨−2𝜏
+ 2𝑠min
𝑗∈A0

󵄨󵄨󵄨󵄨󵄨𝜃(0)𝑗 󵄨󵄨󵄨󵄨󵄨−2𝜏−2 󵄩󵄩󵄩󵄩󵄩𝜃A0 − 𝜃(0)A0󵄩󵄩󵄩󵄩󵄩2)
= 𝑂𝑝 ((𝑛𝑟/(2𝑟+1)])2 𝑛−4𝑟/(2𝑟+1)𝜄−2𝜏𝑠) (1+ 𝑂𝑝 (𝜄−2𝑛−(4𝑟+1)/(2𝑟+1))) = 𝑜𝑝 (𝑛−4𝑟/(2𝑟+1)) ,

(A.15)

where 𝜄 = min𝑗∈A0 |𝜃(0)𝑗 |. Using the same argument, we obtain
that󵄩󵄩󵄩󵄩󵄩󵄩󵄩1𝑛𝐺A0󵄩󵄩󵄩󵄩󵄩󵄩󵄩2 = 𝑂𝑝 ((𝑛𝑟/(2𝑟+1)])2 𝑛−(6𝑟+2)/(2𝑟+1)𝜄−2𝜏−2)= 𝑜𝑝 (𝑛−(6𝑟+2)/(2𝑟+1)) . (A.16)

By the simple calculation, we get

𝜃A0 = [1𝑛 𝑛∑𝑖=1𝑃̂𝑇𝑖,A0 𝑃̂𝑖,A0 − 1𝑛𝐺A0]
−1 1𝑛 𝑛∑𝑖=1𝑃̂𝑇𝑖,A0𝑌𝑖. (A.17)

By the fact (𝐻1 + ℎ𝐻2)−1 = 𝐻−11 − ℎ𝐻−11 𝐻2𝐻−11 + 𝑂(ℎ2), we
have

[1𝑛 𝑛∑𝑖=1𝑃̂𝑇𝑖,A0 𝑃̂𝑖,A0 − 1𝑛𝐺A0]
−1

= [1𝑛 𝑛∑𝑖=1𝑃̂𝑇𝑖,A0 𝑃̂𝑖,A0]
−1 + 𝑂 (𝑛−2/3) . (A.18)

For simplicity, let

1𝑛 𝑛∑𝑖=1𝑃̂𝑇𝑖,A𝑃̂𝑖,A
= ( 1𝑛 𝑛∑𝑖=1𝑍𝑇𝑖,A1𝑍𝑖,A1 1𝑛 𝑛∑𝑖=1𝑍𝑇𝑖,A1𝑊̂𝑖,A21𝑛 𝑛∑𝑖=1𝑍𝑇𝑖,A1𝑊̂𝑖,A2 1𝑛 𝑛∑𝑖=1𝑊̂𝑇𝑖,A2𝑊̂𝑖,A2

)
= (𝐻11 𝐻12𝐻21 𝐻22) .

(A.19)

By the inverse of the block matrix, we have

(𝐻11 𝐻12𝐻21 𝐻22)
−1 = (𝐻11 𝐻12𝐻21 𝐻22)

= ( 𝐻−111.2 −𝐻−111.2𝐻12𝐻−122−𝐻−122.1𝐻21𝐻−111 𝐻−122 + 𝐻−122𝐻21𝐻−111.2𝐻12𝐻−122) ,
(A.20)
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where𝐻11.2 = 𝐻11 − 𝐻12𝐻−122𝐻21. Consequently, we have
𝛽A1 = 1𝑛𝐻11 { 𝑛∑𝑖=1𝑍𝑇𝑖,A1𝑌𝑖 − 𝐻12𝐻−122 𝑛∑𝑖=1𝑊̂𝑇𝑖,A2𝑌𝑖} ,
𝐸 (𝛽A1 | 𝑍, 𝜁) = 𝛽0A10 + 1𝑛𝐻11{ 𝑛∑𝑖=1𝑍𝑇𝑖,A1𝜂A2 (𝜁𝑖)
− 𝐻12𝐻−122 𝑛∑

𝑖=1

𝑊̂𝑇𝑖,A2𝜂A2 (𝜁𝑖)} ,
(A.21)

var (𝛽A1 | 𝑍, 𝜁) = 1𝑛2
⋅ 𝐻11 𝑛∑
𝑖=1

(𝑍𝑖,A1 − 𝑊̂𝑖,A2𝐻−122𝐻21)𝑇 var (𝑌𝑖)
⋅ (𝑍𝑖,A1 − 𝑊̂𝑖,A2𝐻−122𝐻21)𝐻11,

(A.22)

where the elements of 𝜂A2(𝜁𝑖) are 𝜂𝑘 = 𝑓0𝑘(𝜁𝑖𝑘) −𝐵𝑇𝑘 (𝜁𝑖𝑘)𝛾𝑘 for𝑘 ∈ A2. For convenience, we denote𝐷(𝛽A1) = var (𝛽A1 | 𝑍, 𝜁) . (A.23)

By (A.21), we have𝛽A1 − 𝐸 (𝛽A1 | 𝑍, 𝜁)
= 1𝑛𝐻11 ( 𝑛∑𝑖=1𝑍𝑇𝑖,A1𝜀𝑖 − 𝐻12𝐻−122 𝑛∑𝑖=1𝑊̂𝑇𝑖,A2𝜀𝑖) . (A.24)

Similar to the proof of (A.16) in Tian, Xue, and Hu [30], we
can show that{𝐷 (𝛽A1)}−1/2 {𝛽A1 − 𝐸 (𝛽A1 | 𝑍, 𝜁)} L󳨀→

𝑁(0, 𝐼|A1|) . (A.25)

We complete the proof of Theorem 3.
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